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SUMMARY

A numerical algorithm for the steady state solution of three-dimensional incompressible flows is
presented. A preconditioned time marching scheme is applied to the conservative form of the governing
equations. The preconditioning matrix multiplies the time derivatives of the system and circumvents the
eigenvalue-caused stiffness at low speed. The formulation is suitable for constant density flows and for
flows where the density depends on non-passive scalars, such as in low-speed combustion applications.
The k–� model accounts for turbulent transport effects. A cell-centred finite volume formulation with a
Runge–Kutta time stepping scheme for the primitive variables is used. Second-order spatial accuracy is
achieved by developing for the preconditioned system an approximate Riemann solver with MUSCL
reconstruction. A multi-grid technique coupled with local time stepping and implicit residual smoothing
is used to accelerate the convergence to the steady state solution. The convergence behaviour and the
validation of the predicted solutions are examined for laminar and turbulent constant density flows and
for a turbulent non-premixed flame simulated by a presumed probability density function (PDF) model.
Copyright © 2001 John Wiley & Sons, Ltd.
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1. INTRODUCTION

Computational fluid dynamics (CFD) is extensively used to simulate industrially important
physical problems in the low Mach number regime, where the incompressibility condition (i.e.
density no longer related to pressure fluctuations) is a valid assumption. Incompressible flows
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may be both non-reacting flows at low speed (where the density is assumed to be constant)
or, as in many combustion applications, such as gas turbines, combustor chamber flows,
where density is assumed to depend only on heat release [1].

Historically, pressure-based approaches were dominant in the early days of the simulation
of incompressible flows. In these methods, pressure is either updated by a Poisson equation
or by a correction equation obtained from the continuity equation acting as a constraint
condition for the momentum field [2,3].

On the other hand, time marching density based codes have been successfully used for a
wide range of Mach numbers where compressibility is important. These codes have become
highly sophisticated in terms of geometry complexity, accurate spatial discretization and
convergence acceleration techniques. Unfortunately, numerical algorithms developed for
compressible flows are often ineffective when the Mach number becomes of the order of
that found in typical aero-engine combustion chambers [�O(10−3)] because of the stiffness
of the system’s eigenvalues. Actually, the time step of explicit schemes is limited for stabil-
ity reasons and the maximum allowable time step is inversely proportional to the largest
eigenvalue, which for low speeds is approximately the speed of sound. However, the time
step associated with the waves convected at the fluid speed approaches infinity as the Mach
number approaches zero. Hence, the convergence slows dramatically due to the disparity of
the wave speeds. Further difficulties are present if the flow is assumed incompressible
(because pressure cannot be updated by using the equation of state) and in combustion
simulations (where strong density changes occur due to heat release).

In recent years preconditioning methods have been used to eliminate the eigenvalues
stiffness at low speed. The major advantage of the preconditioning methods is that they
may be easily implemented into existing time marching compressible codes, whose features
are retained. These methods are based on the technique developed by Chorin [4]: an
artificial compressibility term in the form of a time derivative of pressure replaces the time
derivative of density in the continuity equation. Different methods based on the artificial
compressibility technique have been suggested. A perturbed form of the governing equa-
tions may be obtained by expanding the flow variables in terms of the Mach number.
Low-speed flows with volumetric heat addition have been simulated by employing such
techniques [5]. Alternatively, a suitable preconditioning matrix may be introduced. The
preconditioning matrix premultiplies the time derivatives of the system and rescales the
eigenvalues to the same order of magnitude. Preconditioning matrices have been proposed
for incompressible and compressible flows [6–8]. Recently, this preconditioning approach
has been proposed to solve reacting and non-reacting flows within a wide Mach number
range [9–11].

The objective of this paper is to employ a preconditioning technique based on the use of
a preconditioning matrix to simulate incompressible flows, where the density is constant or
depends only on some integrated scalars, such as temperature or chemical species’ mass
fractions. An MUSCL scheme for the discretization of the inviscid fluxes and a multi-grid
technique are developed for the preconditioned system of equations. Numerical simulations
of laminar and turbulent internal flows, as well as a turbulent diffusion flame modelled by
assumed probability density function (PDF) is presented.

Copyright © 2001 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2001; 36: 619–637



3D INCOMPRESSIBLE FLOWS WITH COMBUSTION 621

2. GOVERNING EQUATIONS

The continuity, momentum and non-passive scalar equations are expressed as [1]

��̄

�t
+� ·(�̄ ũ)=0 (1)

��̄ ũ
�t

+� ·(�̄ ũũ)+�p̄=� ·� (2)

��̄�� l
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+� ·(�̄�� lũ)=� ·(Dl��� l)+Hl (3)

where the overbar is the Reynolds averaging operator, the overtilde is the Favre averaging
operator, t is the time, � is the density, u is the velocity vector, p is the pressure, �l is the
non-passive scalar (l=1, Ns, Ns being the number of integrated scalars), Dl is the non-passive
scalar diffusion coefficient and Hl is the non-passive scalar source term. Turbulence effects are
accounted for by integrating the two k–� model scalar equations
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where k is the turbulence kinetic energy, � is the turbulence dissipation rate, � is the laminar
viscosity and �t is the turbulent viscosity. The stress tensor � is given by

�= (�+�t)(�ũ+�ũT)−
2
3

[(�+�t)(� · ũ)+ �̃k ]I (6)

where I is the unit tensor. The turbulent viscosity �t and the turbulence production term P are
expressed respectively as

�t=c�

�̄k2

�
(7)

P=�t(�ũ+�ũT): �ũ−
2
3

[�t(� · ũ)+ �̄k ](� · ũ) (8)

According to the ‘standard’ k–� model, the following values are assigned to the turbulence
constants: �k=1, ��=1.3, c1=1.45, c2=1.92 and c�=0.09.

By assuming a constant laminar viscosity and constant laminar diffusion coefficients, the
system of governing equations (1)– (3) is closed by the equation of state

�̄= �̄(�l) (9)
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2.1. Non-premixed turbulent combustion model

The non-passive scalar case we consider is that of a turbulent diffusion flame. Following
the conserved scalar approach [13], a diffusion flame may be simulated by integrating the
two scalar equations

��̄f�
�t

+� ·(�̄f� ũ)=� ·(D�f� ) (10)

��̄f �2�

�t
+� ·(�̄f �2� ũ)=� ·(D�f �2� )+2

�t

Prt

�f� ·�f� −cf�̄
�

k f �2� (11)

where f is the mixture fraction, f �2 is the mixture fraction variance and cf=1. The diffusion
coefficient D is given by

D=
�

Pr
+

�t

Prt

(12)

where Pr=0.7 and Prt=0.7 are the laminar and turbulent Prandtl number respectively.
The assumptions that lead to the conserved scalar model are: two-feed flow (and uniform

composition and temperature in the two feeds); a low Mach number; Dufour and Soret
effects neglected; species specific heats at constant pressure assumed constant; equal diffu-
sion coefficient for all the species; Lewis number equal to one; adiabatic walls; body forces
and radiative flux neglected. The conserved scalar f represents either the normalized non-
averaged enthalpy (h−h2)/(h1−h2) or the mixture fraction (e.g. the mass fraction of mate-
rial in the mixture originated in feed 1, with (1− f ) originated in feed 2) [13]. The variance
f �2� accounts for the fluctuations of f� due to turbulence. Under thermochemical equilibrium
and low Mach number hypothesis, the density is assumed to be a function of f alone,
expressed as

�=
p0

F( f )
(13)

where p0 is the combustor average pressure. The function F( f ) (depending on the equi-
librium chemistry between a specific fuel and air) is approximated by the N-polynomial fit

F( f )= �
N

n=0

cnf n (14)

obtained by minimizing the Gibbs free energy of the products mixture [14]. The mean
density is evaluated by
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�̄=
�� 1
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�( f )
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�� 1
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(15)

where P� ( f ) is the Favre probability density function. Using the assumed �-PDF model [15],
P� ( f ) is given by

P� ( f )=
f a−1(1− f b−1)� 1

0

f a−1(1− f b−1) df
(16)

where

a=
f� 2(1− f� )

f �2� − f� , b=
f� 2(1− f� )2

f �2� − (1− f� )

By substituting Equations (14) and (16) in Equation (15) one has

�̄=
p0A0

�
N

n=0

cnAn

(17)

where the integrals An are expressed as [16]

An=
� 1

0

f a−1+n(1− f b−1) df=A0 �
n

m=1

a−1+m
a+b−1+m

(18)

3. PRECONDITIONING METHOD

Following the cell-centred finite volume approach, the system of governing equations (1)– (3)
can be written in compact form as

dW
dt

= −
1
�

�
m

[(FE−FV) ·n]mSm+H (19)

where W= [�̄, �̄ ũ, �̄�� l]T is the conserved variables vector with �� l= (k, �, f� , f �2� ). Furthermore,
� is the cell volume, FE is the inviscid flux, FV is the viscous flux, Sm is the area of the
m-interface of the cell and H is the source term vector.

As noted, time marching algorithms applied to Equation (19) become ineffective at low
speed because of eigenvalue stiffness. Furthermore, in Equation (19) the pressure cannot be
numerically updated by the equation of state (9). This problem is circumvented by using the
following preconditioning technique: by introducing the matrix
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K=
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(20)

Equation (19) is transformed to the non-conservative form

�
K

�W
�Q

� dQ
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= −
1
�

K �
m

[(FE−FV) ·n]mSm+KH (21)

in terms of the primitive variables vector Q= [(P−p0), ũ, �� l]T. The integrated variable
(P−p0) eliminates the round-off error arising in the computation of pressure and pressure
gradients. In the matrix

K
�W
�Q

=

�
�
�
�
�

0 0 �̄�� l

0 �̄I 0
0 0 �̄I

�
�
�
�
�

(22)

the term (1, 1), which multiplies the time derivative of pressure, controls the pressure wave
speeds and is responsible for the eigenvalues’ stiffness. The stiffness is avoided by replacing the
matrix (22) with matrix [6]

P−1=

�
�
�
�
�

1
�

0 0

0 �̄I 0
0 0 �̄I

�
�
�
�
�

(23)

where � represents the pressure wave speed of the preconditioned system. Therefore, Equation
(21) is replaced by

dQ
dt

= −
1
�

� �
m

[(FE−FV) ·n]mSm+�H (24)

where the preconditioning matrix � is defined as

�=PK=
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�
�
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(25)
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In Equation (24), pressure is updated by its time derivative and the equation of state is
employed to obtain the density. For constant density flows the preconditioning reduces to the
artificial compressibility method of Chorin [4]. Otherwise, the method is an extension of the
artificial compressibility method to flows where the density depends on non-passive scalars.

By defining the inviscid numerical flux as f=FE ·n (n being the normal to the cell interface),
the eigenvalues of the preconditioned inviscid Jacobian A=��f/�Q are

�r(A)=U, U, U, U/2+c, U/2−c (26)

where U= ũ ·n is the contravariant velocity and c=�(U/2)2+� is the pseudo-speed of sound.
In this work � is given by �=�0U�

2 , where U� is a free-stream velocity and �0 is a constant
greater than zero in order to ensure that one eigenvalue is negative for subsonic flows. The
value of � is critical for the convergence properties of the method. Actually, well-conditioned
�r are obtained when � makes the pseudo-acoustic wave speed of the same order as the particle
velocity (i.e. �0=1). Nevertheless, when the Reynolds number decreases, the characteristic
time of viscosity spreading also decreases, and if � is too small, the boundary layer cannot
adapt to the too-slowly developing pressure field and fluctuations of separation regions may
destroy the convergence [7]. Numerical experiments reported below will illustrate the influence
of � on the properties of the numerical scheme.

4. SOLUTION PROCEDURE

Roe’s approximate Riemann solver [17] is used for the spatial discretization of inviscid fluxes.
At the interface (i+1/2) between the adjacent cells (i, j, k) and (i+1, j, k), fi+1/2 is evaluated
by using the expression

fi+1/2=
fL+ fR

2
−

1
2

�−1�Ai+1/2��Q (27)

where �( ·)= ( ·)R− ( ·)L and where the left and right states QL and QR are computed by
extending the MUSCL approach of Reference [18] to the preconditioned system. It yields

QR=Qi+1−
1
2

�Qi+3/2 (28)

QL=Qi+
1
2

�Qi+1/2 (29)

where spurious oscillations are eliminated using

�Qi+1/2=minmod[�Qi, 	(�Qi−1)] (30)

with
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�Qi=Qi+1−Qi

minmod(x, y)=sgn(x) ·max{0, min[�x �, y sgn(x)]}

The value 	=1 (second-order full-upwind scheme) is employed for all the equations apart
from the k–� equations (4) and (5), for which 	=0 (first-order upwind scheme). The
first-order upwind discretization of k–� equations increases the robustness of the solver and is
justified by the fact that, for combustion applications, viscous terms are dominant in
turbulence equations [1]. In Equation (27) �A�=R���R−1, where R is the matrix of inviscid
right eigenvectors, ���=diag(��r �) and arithmetic averaging between QR and QL is used to
define the interface values. After rearranging terms, one has

�A��Q=

�
�
�
�
�
�
�

�
��p̄

c
+M


�
M

�p̄
�̄

n+ �U ��ũ+C



�̄
n

�U ���� l

�
�
�
�
�
�
�

(31)

where


= �̄�U+U��̄

C=c(1+M2)− �U �

and M= (U/2)/c is the pseudo-Mach number.
The discretization of the viscous terms is obtained by using a discrete form of the Gauss

theorem, leading to a central approximation of the viscous fluxes [19]. The time integration is
performed by a five-stage Runge–Kutta algorithm applied to the set of coupled ordinary
differential equations (24) written in the form

�
dQ
dt

=R(Q) (32)

where R is the preconditioned residual. The Runge–Kutta scheme convergence is accelerated
by local time stepping and implicitly smoothing. In the local time stepping procedure, the
equation is advanced in time by the maximum time step in each mesh cell. The local time step
is calculated by considering stability limitations due to both the convective and the viscous
eigenvalues of the system. The stability range of the time integration scheme is increased by
implicitly smoothing the residuals at each stage. The right-hand side residual R of Equation
(32) is thus replaced by the average R of itself and the neighbouring residuals, following the
expression

(1−��k
2)(1−��j

2)(1−��i
2)R=R (33)
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where �i
2 is the second-order central differencing in the i-direction and �=0.5 is used in all the

computations.

4.1. Multi-grid acceleration

A multi-grid algorithm is employed in order to accelerate the convergence on the fine mesh by
damping out the low-frequency error components by means of iterations on coarser meshes
[19]. Coarser meshes are generated by eliminating alternate points in each co-ordinate
direction. In this way a hierarchy, up to four levels L=1, 2, 3, 4, of grids is created. Within
the multi-grid strategy, the following steps are performed. One Runge–Kutta sweep (consisting
of a specified number of iterations) is carried on the fine grid according to Equation (32). The
solution is restricted from the fine grid (level L) to the next coarse grid (level L+1) by the
volume-weighted average

Q0
L+1=

1
�L+1 �

L vol

[�LQL]L vol
(34)

where the sum is over the eight fine grid control volumes that form the coarse grid control
volume. A forcing function F is defined on the coarse grid by

FL+1= �
L vol

[R(QL)]L vol
−R(Q0

L+1) (35)

which is the difference between the transferred residuals and the coarse grid residuals based on
Q0

L+1. A Runge–Kutta sweep is performed on the coarse grid by means of Equation (32) so
modified

�L+1 dQL+1

dt
=TL+1=R(QL+1)+FL+1 (36)

where the forcing function is frozen for a given grid level throughout a multi-grid cycle. The
forcing function is constructed so that the solution on a coarse grid is driven by the residuals
collected on the next finer mesh (the first iteration is only driven by the collected fine grid
residuals). Again the solution and the residuals are restricted to the next coarse grid by
calculating the forcing function as

FL+1= �
L vol

[T(QL)]L vol
−R(Q0

L+1) (37)

When the coarsest grid is reached, the corrections are prolonged back to the finger grid by

Qnew
L =QL+pL+1

L (Qnew
L+1−Q0

L+1) (38)
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where the prolongation operator pL+1
L is a trilinear interpolation operator. The corrections are

implicitly smoothed using Equation (33) before updating the finger grid solution. A W-cycle
multi-grid algorithm is employed in the present work, where first-order upwind numerical
dissipation is used (	=0 in Equation (30)) for the coarser grids.

The full multi-grid approach was also tested but with no advantage in terms of computa-
tional cost.

The numerical scheme illustrated here may also be extended to time-accurate computations
by using a dual time stepping method [5]. In this case, the numerical methods used to
accelerate the convergence (local time stepping, smoothing, multi-grid) would be applied for
solving the governing equations between two physical time instants.

4.2. Boundary conditions

On the inflow boundary, free-stream values of velocity and scalars are imposed while the
pressure is extrapolated from the internal domain. On the outflow boundary, scalars are
extrapolated, pressure is fixed and the extrapolated value of velocity is added to a constant
chosen in order to satisfy the global conservation of mass at each iteration in the computa-
tional domain. On a solid wall, zero-gradient boundary conditions are set for pressure and
scalars and the no-slip condition is enforced on the velocity. A ‘wall function’ approach [12]
is used for the turbulent quantities. The ‘law of wall’ is solved by a Newton–Raphson method
in order to obtain the friction velocity u�. The values of k and � in cells immediately adjacent
to solid walls are obtained according to

k=
u �

2

�c�

, �=
u �

3

��
(39)

where �=0.42 and � is the distance from the cell centre to wall. The value of u� is also used
to fix the value of �t at the wall, such that the wall shear stress is equal to �u �

2.
Information coming from adjacent blocks are used as boundary conditions when a multi-

block partitioning of complex computational domains is employed.

5. RESULTS

The code was evaluated by simulating a laminar two-dimensional channel and circular duct,
laminar and turbulent backward-facing steps and a turbulent diffusion flame, as illustrated in
the following sections.

5.1. Two-dimensional channel and circular duct

Solution accuracy and convergence characteristics of the code were initially tested by simulat-
ing a laminar flow in a two-dimensional channel and circular duct. The two-dimensional
channel is 2 m long and 1 m high, the duct is 2 m long and the diameter is 1 m. A parabolic
velocity profile, with a mean value of U=0.1 m s−1, is specified at the entrance. A uniform
velocity initial solution is fixed. Reynolds numbers based on 1 m are 50 and 100 for the
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two-dimensional and axisymmetric case respectively. The Mach number is 3×10−3. Due to
flow symmetry, a grid with only one cell in the azimuthal direction is used. The grid has
80×40 cells in the axial and radial direction respectively and four multi-grid levels were used.

Preliminary experiments studied the influence of � on the convergence of the two-dimen-
sional channel. In Figure 1 the convergence histories for �0 equal to 0.1, 1, 10 and 100 are
shown. Here the logarithm of the L2-norm of the pressure residual is plotted versus the number
of iterations (the first iteration residual is scaled to one). Figure 1 shows that convergence is
best for �0=10. As noted before, when the Reynolds number is low the convergence
characteristics improve if �0 is increased with respect to its optimum inviscid value �0=1.
Actually, as Reynolds number decreases it is necessary that the pressure wave fluctuations in
the boundary layer go faster, according to a faster viscosity spreading adjustment. As
demonstrated by the case �0=100, if �0 becomes too high the convergence slows down due to
the increased ill conditions of the inviscid eigenvalues. The benefits of using multi-grid are
demonstrated in Figure 2 (however, for higher multi-grid levels the computational cost of a
single iteration is larger due to the larger complexity of multi-grid cycles). As a representative
quantity to check code accuracy we assumed the relative error of axial pressure gradient with
respect to the analytical solution (Poiseuille flow). The small Reynolds number of the test case
is consistent with the high turbulent viscosity present in combustion applications. Machine
zero accuracy is achieved for all the cases. The solutions on the two-dimensional 80×40 grid
were found to be �-independent with respect to the pressure error. Starting from the 80×40
grid, in the multi-grid strategy 40×20, 20×10 and 10×5 grids are generated. Calculations
for two-dimensional channel and circular duct were performed on the four grids with �0=10
and using the coarser grids for the multi-grid cycles. Table I illustrates the results of our
calculations and those of Cabuk et al. [20], where a preconditioning method is also employed.
Table I shows the accuracy gain with decreasing grid size. Grid independency is achieved
before for the circular duct.

Figure 1. Two-dimensional channel, 80×40 grid. Pressure residual versus number of iterations: �,
�0=0.1; �, �0=1; �, �0=10; �, �0=100.
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Figure 2. Two-dimensional channel, 80×40 grid, �0=10. Pressure residual versus number of iterations:
�, four multi-grid levels; �, three multi-grid levels; �, two multi-grid levels; �, one multi-grid level.

Table I. Two-dimensional channel and circular duct.

Grids Two-dimensional Circular duct (%)
channel (%)

A B A B

2.8 5.1 0.4 15.710×5
0.6 0.920×10 0.27 3.1
0.16 0.15 0.25240×20 0.4
0.04 0.0280×40 0.250 —

Pressure gradient relative errors with respect to analytical solution for �0=10: A,
present calculations; B, Cabuk et al. [20].

5.2. Laminar backward-facing step

Another test case studied is that of a two-dimensional laminar flow between a flat plate and
a backward-facing step. The problem has been experimentally investigated by Armaly et al.
[21]. The geometry is shown in Figure 3, where H=Y=0.5 cm, s=4H and L=30H. The flow
reattaches at distance x1 downstream the step. From Armaly’s experiments, when Re�800 (Re
being based on the hydraulic diameter of 2H) the flow is laminar and no three-dimensional
effect is present. Furthermore, an additional recirculation flow region appears on the upper flat
plat when Re�400. This zone extends downstream of the step between x2 and x3.

In our calculations a parabolic velocity profile, with a mean value U=1 m s−1, is specified
at the entrance (the corresponding Mach number is 3×10−3). A two-block mesh simulates the
inlet channel. The meshes for block 1 and block 2 have 16×32 and 120×64 cells respectively

Copyright © 2001 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2001; 36: 619–637
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Figure 3. Geometry of backward-facing step.

and three levels of multi-grid are employed. Calculations were performed at Re equal to 100,
152, 303, 389, 452, 500, 600, 700 and 800. The values of �0 ranged from �0=0.01 at Re=800
to �0=10 at Re=100. No convergence was achieved at higher Re if �0�0.01, showing that
the presence of large recirculation zones requires the propagation speed of pressure waves to
be slow. The reattachment distances x1/H and x3/H and the separation distance x2/H
calculated for different Re are shown in Figure 4, where the experiments of Armaly and the
numerical results of Cabuk et al. [20], Kim and Moin [22], Rogers and Kwak [23] are also
reported. There is good agreement between our results and those of the other authors.

Figure 4. Laminar backward-facing step. Separation (x1, x2) and reattachment (x3) points at different
Re : — , present calculations; �, Armaly et al. [21]; �, Kim and Moin [22]; �, Cabuk et al. [20]; �,

Rogers and Kwak [23].
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5.3. Turbulent backward-facing step

The geometry of this two-dimensional planer turbulent test case is that of Figure 2, where
H=1.27 cm, Y=8H, s=4H and L=30H. In the experiments performed by Driver and
Seegmiller [24], mean velocity and turbulent kinetic energy transversal profiles have been
measured at different axial positions. The profiles at 4H upstream of the step have been used
as inlet profiles in our computation. The inlet values of � were calculated through the relation

�=
k3/2

0.3 ·Y
(40)

The Re based on the inlet mean velocity U=44.2 m s−1 is 3×105 and the flow is fully
turbulent. The value �0=1 was used. Blocks 1 and 2 have 16×64 and 96×72 cells
respectively.

The standard k–� model predicts a reattachment length of x1/H�5.1, while in the
experiments x1/H�6.2. Therefore, the standard k–� model underpredicts the experimental
reattachment length. Figures 5 and 6 show the transversal profiles of the axial velocity and
turbulent kinetic energy at different axial positions, x/H. In all cases, agreement between
predicted and experimental profiles is good.

5.4. Coaxial jet flame with flame-holder

This test case is based on an experimental axisymmetric configuration tested by Correa and
Gulati [25]. The three-block computational domain and the streamline pattern are shown in
Figure 7. The combustor is a 15×15 cm square section wind tunnel (simulated as axisymmet-
ric) with a 3.18 mm in diameter cylindrical fuel nozzle located along the axis. A 38.1-mm

Figure 5. Turbulent backward-facing step. Velocity profiles at different distances x/H from the step: — ,
present calculation; �, Driver and Seegmiller [24].
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Figure 6. Turbulent backward-facing step. Turbulent kinetic energy at different distances x/H from the
step: — , present calculation; �, Driver and Seegmiller [24].

Figure 7. Geometry and streamlines of coaxial jet flame.

diameter axisymmetric bluff body flame-holder surrounds the fuel nozzle in order to create a
recirculation zone. The fuel molar fraction composition is 27.5 per cent CO, 32.3 per cent H2;
40.2 per cent N2. This density is evaluated by the thermochemical equilibrium relation (14),
where N=15. The corresponding polynomial fit F( f ) is shown in Figure 8. The maximum
density variation is �( fst)/�(0), where fst=0.35 is the mixture fraction stochiometric value.
The fuel and air velocities are 80 and 6.5 m s−1, respectively. Pressure is 101000 Pa and fuel
and air temperatures are 300 K each. Uniform inlet velocity profiles were used for both fuel
and air. The inlet value of k was 0.005 ·U2 and � was given by Equation (40). An axisymmetric
grid with 5504 cells and a spread angle of 10° was used. Density relaxation was necessary to
achieve the steady solution because of the strong density variation (see Figure 8) especially
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Figure 8. Coaxial jet flame. Thermochemical equilibrium polynomial fit for mixture density.

during the first iterations. The density at the n+1 time step is relaxed according to the
formula

�new=�n+ (1−)�n+1 (41)

where the relaxation factor =0.001 is employed.

Figure 9. Coaxial jet flame. Mixture fraction f� radial profile at distance x/d=10 from the bluff body:
— , present calculation; �, Correa and Gulati [25].
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Figure 10. Coaxial jet flame. Normalized mixture fraction variance �f �2� /f� at distance x/d=10 from the
bluff body: — , present calculation; �, Correa and Gulati [25].

The radial profiles of mixture fraction f� and of its normalized variance �f �2� /f� at the axial
station x/d=10 (where d is the diameter of the fuel jet) are shown in Figures 9 and 10. Here
also the experiments of Correa are reported. In Figure 11 the radial profile of f� at x/d=20 is
shown. Comparison between predictions and experiments is satisfactory under the approxima-
tion of thermochemical equilibrium.

Figure 11. Coaxial jet flame. Mixture fraction f� radial profile at distance x/d=20 from the bluff body:
— , present calculation; �, Correa and Gulati [25].
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6. CONCLUSIONS

A numerical code for low-speed turbulent flows has been presented. A preconditioning method
is applied to a density based formulation suitable for both non-reactive flows and non-
premixed combustion flows. The preconditioning allows for retaining all the numerical
characteristics of density based codes and overcoming their difficulties when simulating
low-speed flows. A MUSCL spatial discretization and a multi-grid technique have been
developed for the preconditioned system. This solver extends explicit CFD solutions to
non-reactive and reactive flows with very low Mach numbers, down to O(10−3). The method
has been used to successfully simulate laminar and turbulent cold flows as well as a
combustion flow characterized by large density fluctuations. The numerical results are in
agreement with experiments and with results obtained by other authors.
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